第二百零四章 NS方程的阶段性成果(4/5)
尤其是费弗曼,眼神中不仅有着浓浓的惊讶和惊喜,更有着不解的困惑。
从黑板上的这些数据来看,这种‘高维余芽函数’并不是什么很复杂的东西,甚至可以说很基础。
主要运用了矩阵的正定性用霍尔维茨定理和三维欧式空间r3中曲面为波阵面的波前面这两种数学方法。
通过这两种方法做了一定的等价类映射芽。
但正是这种看似基础的东西,却能完善的和狄利克雷函数融合在一起,在三维曲面中构建出一个正则的borel测度μ及一个单调下降的光滑函数序列。
基础的结构,基础的应用,却能完美的解决问题。
只是,这种数学方法,看起来似乎并不像是专门为了数学而研发出来的样子。
看着黑板上的算式,费弗曼心中升起了一股浓重的违和感。
相对比德利涅来说,他并不算一个纯粹的数学家。
因为他在物理方面也有一些发展,而且还是费米国家加速器实验室的特聘教授,专门为费米实验室计算各种物理数据,因此对于物理也有一些了解。
从黑板上的算式中,费弗曼敏锐的察觉到了这些公式在物理上用途,在他看来,这些公式并不像是为数学研发出来,更像是为物理量身定制的。
当然,它也可以运用到数学上。
比如现在,正好能为他解决等谱问题。
......
黑板前,徐川落下最后一笔,而后停下手中的粉笔,转身看向费弗曼和德利涅。
“这个就是‘高维余芽函数’了,它是一种计算构建光滑函数的极值点的方法。或许可以应用到在三维曲面中构建一个正则的borel测度上。”
费弗曼和德利涅不约而同的点了点头。
对于他们而言,要理解黑板上的这些东西并不难。
德利涅看着黑板上算式推了推眼镜,道:“这种方法并不难构建出来,它是很基础的东西,只是需要一定的技巧性,而且它并不是不可替代的。”
本章未完,下一页继续