与科大教授的深度交流(3/5)
赵教授站起身来,走到旁边的一块白板前,拿起马克笔开始边画边讲:“向先生,你看。我们目前采用的是一种多步聚合反应的策略。首先,在单体的选择上,我们筛选出了几种具有特殊官能团的有机小分子,这些官能团就像是一个个小钩子,能够在反应过程中相互连接,逐步构建起聚墨林的大分子骨架。这其中,反应条件的控制极为关键,温度、压力、催化剂的种类和用量,就像是一场精细的化学舞蹈中的节奏和步伐,差一点都不行。我们通过大量的实验,找到了一个相对较优的反应窗口,能够让单体以较高的转化率形成初步的聚合物链。但是,这里面又存在一个问题,就是聚合物链的分子量分布比较宽,就像一群高矮胖瘦不一的士兵,不太整齐,这会影响材料的性能稳定性。”
向阳听得入神,不时点头:“那赵教授,针对这个分子量分布的问题,您有什么进一步的思路或者解决方案吗?”
赵教授皱了皱眉头,继续说道:“我们正在尝试引入一些链转移剂,这些链转移剂就像是一个个交通警察,能够在聚合反应过程中,适时地终止某些链的增长,或者引导其按照我们期望的方式进行分支和连接,从而使分子量分布更加均匀。不过,这又会对整个反应体系的动力学产生新的影响,需要重新进行一系列的理论计算和实验验证。就好比你在一个复杂的交通网络中增加了新的信号灯,虽然可能会改善局部的交通拥堵,但也可能会引发其他路口的新问题,需要全面地去评估和调整。”
向阳若有所思,接着问道:“赵教授,那在材料的性能测试方面呢?我知道聚墨林的耐高温和耐腐蚀性能是其两大亮点,您在实验室里是如何对这些性能进行精准测试和评估的呢?”
赵教授回到座位上,喝了一口水,缓缓说道:“对于耐高温性能,我们采用了模拟太空环境的高温炉测试系统。把聚墨林的小样放在里面,逐步升高温度,同时利用高精度的热分析仪器,监测材料在升温过程中的物理化学变化,比如热分解温度、玻璃化转变温度等关键指标。这就像是把一个勇士放在烈火中考验,看他能坚持到什么程度,每一个数据都是他承受能力的见证。而对于耐腐蚀性能,我们构建了一个多组分的腐蚀介质环境,模拟太空里可能遇到的各种酸碱气体、辐射等因素,通过测量材料在这种环境下的质量损失率、表面形貌变化等参数,来评估其耐腐蚀的能力。这就好比让一个人在充满各种陷阱和危险的迷宫里行走,看他能毫发无损地走多远。”
本章未完,下一页继续