第五十一章 与时俱进!数学跟互联网接轨(2/5)
于是引用梅涅劳斯定理,他很快完成了证明。
又是50分到手。
也就是说,他现在二试至少已经拿到了130分了。
可是这两道题目明显有些偏简单,他会的话,姿琦肯定也会。
只能把希望寄托在最后的大题上面:
在嗷喔嗷的s8全球总决赛中,ig队伍与fnc的第一场比赛。
第18分钟到第19分钟之间,由于fnc的刀妹狂浪,不知道在干什么导致一波被人收割。
此时的双方人头数比为:<领先。
<为29.4k:34.4k
附图1为双方各选手在前19分钟的经济成长曲线。
附图2为野怪和小兵的刷新、移动速度和各自的金钱数。
附图3为每个人的操作失误率和打团实力发挥率
附图4为金钱兑换战斗力
附图5为各英雄能力成长差异
假设每个选手都是一个标准人(即个人操作水平和能力以及对比赛节奏的把握能力都为1)
同时不考虑实际装备影响(可通过金钱来对战力进行兑换)。
不考虑塔和大龙的因素。
不考虑地图属性的影响。
未来团战发生率为以下所示:
附图6为团战发生地点和各地点的概率。
那么,请问在接下来的10分钟内,fnc的团战胜率变化数值为?
伊诚看完了题目,以及下面的5张附图,愣了大约10秒。
卧槽!!!!
这是个什么鬼?
有几个跟他同样进度的少年也发现了这一点。
“可以啊,与时俱进啊!”
“妈个鸡!还让不让人活了,原来我以为打游戏不需要多少数学知识,现在发现我根本不会打游戏。”
“你们不是应该卷子发下来就开始审题的吗?”一个声音吐槽到。
本章未完,下一页继续